【1】最短路径
最短路径?别乱想哈,其实就是字面意思,一个带边值的图中从某一个顶点到另外一个顶点的最短路径。
官方定义:对于内网图而言,最短路径是指两顶点之间经过的边上权值之和最小的路径。
并且我们称路径上的第一个顶点为源点,最后一个顶点为终点。
由于非内网图没有边上的权值,所谓的最短路径其实是指两顶点之间经过的边数最少的路径。
别废话了!整点实际的哈,你能很快计算出下图中由源点V0到终点V8的最短路径吗?
【2】迪杰斯特拉算法
迪杰斯特拉算法是按路径长度递增的次序产生最短路径的思路求解。
具体算法及其详细讲解如下:
阅读程序前,先要搞明白几个数组作用:
final[w]=1; 表示V0到Vw顶点已经有最短路径的结果
[w]; 表示V0到Vw顶点的最短路径权值和
[w]; 表示V0到Vw顶点的前驱顶点下标值
开始调用算法前,我们需要为案例图创建邻接矩阵图,如下所示:
(1)程序开始运行,final数组是为了标记V0到某顶点是否已经求得最短路径。
如果V0到Vw已经有结果,那么final[w]=1;
(2)第5~10行,是对数据初始化工作。 此时final数组均赋值为0,表示所有点均未求得最短路径。
D数组为 {0,1,5,65515,65535,65535,65535,65535,65535}。因为V0与V1和V2的边权值为1和5。
P数组全为0,表示目前没有路径。
(3)第11行,表示V0至V0路径为0。
第12行,表示V0点到V0点已经求得最短路径,因此final[0]=1。
此时final数组为 {1,0,0,0,0,0,0,0,0}数据结构图的最短路径-数据结构图之三(最短路径--迪杰斯特拉算法),此时整个初始化工作完成。
(4)第13~33行为主循环,每次循环求得V0与一个顶点的最短路径。除去V0,因此索引从1开始。
(5)第15~23行,先令min为65535的极大值,通过w控制循环,与D[w]比较找到最小值为min=1,同时确定k=1。
(6)第24行,由k=1可知与V0最近的顶点是V1,并且由D[1]=1知道此时V0到V1的最短路径是1。
因此再将对应的final[1]设置为1。此时final数组为 {1,1,0,0,0,0,0,0,0}
(7)第25~32行是一循环,此循环甚为关键。
它的目的是在刚才已经找到V0与V1的最短路径基础之上,对V1与其它顶点的边进行计算数据结构图的最短路径,得到V0与它们的当前最短距离,如图所示:
因为min=1,所以D[2]=5不再是V0到V2的最短路径,现在D[2]=V0->V1->V2=min+3=4, D[3]=V0->V1->V3=min+7=8,
D[4]=V0->V1->V4=min+5=6,于是D数组当前值为 {0,1,4,8,6,65535,65535,65535,65535}。
而P[2]=1,P[3]=1,P[4]=1,其表示V0到V2,V3,V4点的最短路径它们的前驱均是V1。
此时P数组为 {0,0,1,1,1,0,0,0,0}。
(8)新一轮循环,此时i=2。第15~23行,对w循环,注意因为final[0]=1和final[1]=1,由第18行的!final[w]可知:
V0与V1并不参与最小值的获取。通过循环比较,找到最小值min=4,k=2。
(9)第24行,由k=2,表示已经求出V0到V2的最短路径,并且由D[2]=4知道最短路径距离为4。
因此将V2对应的final[2]设置为1,此时final数组为 {1,1,1,0,0,0,0,0,0}。
(10)第25~32行,在刚才已经找到V0与V2的最短路径的基础上,对V2与其它顶点的边进行计算,得到V0与它们的最短距离。
如图所示:
因为min=4,所以D[4]=6不再是V0到V4的最短距离,现在D[4]=V0->V2->V4=min+1=5,D[5]=V0->V2->V5=min+7=11。
因此D数组当前值为 {0,1,4,8,5,11,65535,65535,65535,65535}。
而原本P[4]=1,此时P[4]=2,P[5]=2,它表示的意思是V0到V4和V5的最短路径前驱均为V2。
此时P数组为 {0,0,1,1,2,2,0,0,0}。
(11)重新再开始一轮循环,此时i=3。第15~23行,通过对w循环比较找到最小值min=5,k=4。
(12)第24行,由k=4表示已经求出V0到V4的最短路径,并且由D[4]=5知道最短路径距离为5。
因此将V4对应的final[4]设置为1。此时final数组为 {1,1,1,0,1,0,0,0,0}。
(13)第25~32行,对V4与其它顶点的边值进行计算,得到V0与它们的当前最短距离,如图所示:
因为min=5,所以D[3]=8不再是V0到V3的最短路径,现在D[3]=V0->V4->V3=min+2=7,同理:
D[5]=V0->V4->V5=min+3=8,D[6]=V0->V4->V6=min+6=11,
D[7]=V0->V4->V7=min+9=14,因此,D数组当前值为 {0,1,4,7,5,8,11,14,65535}。
而原本P[3]=1,此时P[3]=4,原本P[5]=2,此时P[5]=4。
另外P[6],P[7]=4,它表示V0到V3,V5,V6,V7点的最短路径它们的前驱是V4。
此时P数组值为 {0,0,1,4,2,4,4,4,0}。
(14)之后的循环完全类似。得到最终的结果,如图所示:
此时final数组为 {1,1,1,1,1,1,1,1,1},它表示所有的顶点均完成了最短路径的查找工作。
此时D数组为 {0,1,4,7,5,8,10,12,16},它表示V0到各个顶点的最短路径数,比如D[8]=1+3+1+2+3+2+4=16。
此时的P数组为 {0,0,1,4,2,4,3,6,7}:
这个P数组值可能难理解一些。比如P[8]=7,它表示要查看V0到V8的最短路径时数据结构图的最短路径,顶点V8的前驱是V7;
再由P[7]=6表示要查看V0到V7的最短路径时,顶点V7的前驱是V6,同理,P[6]=3表示V6的前驱是V3。
这样就可以得到:V0到V8最短路径为V8
即就是: V0->V1->V2->V4->V3->V6->V7->V8。
【3】算法实现
实现代码如下:
<pre> 1 #include 2 #include "SeqList.h" 3 #include "Stack.h" 4 #include 5 using namespace std; 6 7 #define INFINITY 65535 8 9 template 10 class Graph 11 { 12 private: 13 SeqList Vertices; 14 DistType *Edges; 15 int nVer, nEdges; 16 17 public: 18 Graph() 19 : Edges(NULL) 20 , nEdges(0) 21 , nVer(0) 22 {} 23 ~Graph() 24 {} 25 26 public: 27 int GetVer() const 28 { 29 return nVer; 30 } 31 32 istream & operator>>(istream &in) 33 { 34 int v, u, value; 35 int i, j; 36 NameType item; 37 cout > u >> value; 61 Edgesv = value; 62 Edgesu = value; 63 } 64 return in; 65 } 66 ostream & operatorV4->V3 265 V0~V4: 5 266 V0->V1->V2->V4 267 V0~V5: 8 268 V0->V1->V2->V4->V5 269 V0~V6: 10 270 V0->V1->V2->V4->V3->V6 271 V0~V7: 12 272 V0->V1->V2->V4->V3->V6->V7 273 V0~V8: 16 274 V0->V1->V2->V4->V3->V6->V7->V8 275 /</pre>
View Code
关于实现代码中的.h文件和Stack.h文件从随笔《顺序表》和《栈》中查找拷贝一份即可。调试环境为。
Good Good Study, Day Day Up.
顺序 选择 循环 总结