的作用是通过添加额外控制条件,来引导 按照创作者的创作思路生成图像,从而提升 AI 图像生成的可控性和精度。在使用 前,需要确保已经正确安装 和 插件。如还未安装,可以参考这篇文章中的教程进行安装部署:
超详细!AI 绘画神器 基础教程
一、AI 绘画工具的选择与运用1. 工作场景下 AI 绘画工具的选择目前文生图的主流 AI 绘画平台主要有三种:、 、DALL·E。
阅读文章 >
目前 已经更新到 1.1 版本,相较于 1.0 版本,.1 新增了更多的预处理器和模型,原有的模型也通过更好的数据训练获得了更优的性能。以下我做简要梳理,想要了解更多内容可以参考作者的文档:
的使用方式非常灵活,既可以单模型应用,也可以多模型组合应用。清楚 的一些原理方法后,可以帮助我们更好的提升出图效果。以下通过一些示例,简要介绍 的实际用法。
一、 单模型应用
1. 线稿上色
方法:通过 边缘检测模型或线稿模型提取线稿(可提取参考图片线稿,或者手绘线稿),再根据提示词和风格模型对图像进行着色和风格化。
应用模型:Canny、、。
Canny 边缘检测:
Canny 是比较常用的一种线稿提取方式,该模型能够很好的识别出图像内各对象的边缘轮廓。
使用说明(以下其它模型同理):
展开 面板,上传参考图,勾选 启用(如果显存小于等于 4G,勾选低显存模式)。预处理器选择 Canny(注意:如果上传的是已经经过预处理的线稿图片,则预处理器选择 none,不进行预处理),模型选择对应的 nny 模型。勾选 Allow 允许预览,点击预处理器旁的按钮生成预览。
其它参数说明:
:使用 生成图片的权重占比影响(多个 组合使用时,需要调整权重占比)。 Step: 开始参与生图的步数。 Step: 结束参与生图的步数。 :预处理器分辨率,默认 512,数值越高线条越精细,数值越低线条越粗糙。Canny 低阈值/高阈值:数值越低线条越复杂,数值越高线条越简单。
Canny 示例:(保留结构,再进行着色和风格化)
软边缘检测:
可以理解为是 .0 中 HED 边缘检测的升级版。.1 版本中 4 个预处理器按结果质量排序: > > > ,其中带 safe 的预处理器可以防止生成的图像带有不良内容。相较于 Canny, 边缘能够保留更多细节。
示例:(保留结构,再进行着色和风格化)
精细线稿提取:
精细线稿提取是 .1 版本中新增的模型,相较于 Canny, 提取的线稿更加精细,细节更加丰富。
的预处理器有三种模式:(粗略模式),(详细模式),(标准模式),处理效果有所不同,对比如下:
示例:(保留结构,再进行着色和风格化)
2. 涂鸦成图
方法:通过 的 模型提取涂鸦图(可提取参考图涂鸦,或者手绘涂鸦图),再根据提示词和风格模型对图像进行着色和风格化。
应用模型:。
比 Canny、 和 的自由发挥度要更高,也可以用于对手绘稿进行着色和风格处理。 的预处理器有三种模式:,,,对比如下,可以看到 的处理细节更为丰富:
参考图提取示例(保留大致结构,再进行着色和风格化):
手动涂鸦示例(根据手绘草图,生成图像):
也可以不用参考图,直接创建空白画布,手绘涂鸦成图。
3. 建筑/室内设计
方法:通过 的 MLSD 模型提取建筑的线条结构和几何形状,构建出建筑线框(可提取参考图线条,或者手绘线条),再配合提示词和建筑/室内设计风格模型来生成图像。
应用模型:MLSD。
建筑/室内设计风格模型下载:
MLSD 示例:(毛坯变精装)
4. 颜色控制画面
方法:通过 的 语义分割模型,标注画面中的不同区块颜色和结构(不同颜色代表不同类型对象),从而控制画面的构图和内容。
应用模型:Seg。
Seg 语义参考:
Seg 示例:(提取参考图内容和结构,再进行着色和风格化)
如果还想在车前面加一个人,只需在 Seg 预处理图上对应人物色值数据结构课程设计案例教程 Stable Diffusion进阶教程!,添加人物色块再生成图像即可。
5. 背景替换
方法:在 图生图模式中,通过 的 模型中的 功能移除背景数据结构课程设计案例教程,再通过提示词更换想要的背景。
应用模型:Depth,预处理器 。
要点:如果想要比较完美的替换背景,可以在图生图的 模式中,对需要保留的图片内容添加蒙版, 值可以设置在 70-80%。
示例:(将原图背景替换为办公室背景)
6. 图片指令
方法:通过 的 模型(ip2p),可以对图片进行指令式变换。
应用模型:ip2p,预处理器选择 none。
要点:采用指令式提示词(make Y into X),如下图示例中的 make it snow,让非洲草原下雪。
示例:(让非洲草原下雪)
7. 风格迁移
方法:通过 的 模型提取出参考图的风格,再配合提示词将风格迁移到生成图上。
应用模型:。
示例:(根据魔兽道具风格,重新生成一个宝箱道具)
8. 色彩继承
方法:通过 的 模型提取出参考图的色彩分布情况,再配合提示词和风格模型将色彩应用到生成图上。
应用模型:Color。
Color 示例:(把参考图色彩分布应用到生成图上)
9. 角色三视图
方法:通过 的 模型精准识别出人物姿态,再配合提示词和风格模型生成同样姿态的图片。
应用模型:。在 .1 版本中,提供了多种姿态检测方式,包含: 身体、 身体+脸、 只有脸、 身体+手+脸、 手,可以根据实际需要灵活应用。
角色三视图示例:
要点:上传 三视图,加载 风格模型( ),添加提示词保持背景干净 ( , white :1.3), views
10. 图片光源控制
方法:如果想对生成的图片进行打光,可以在 模式下,把光源图片上传到图生图区域, 中放置需要打光的原图, 模型选择 Depth。
应用模型:Depth。
要点:图生图中的所有参数和提示词信息需要与原图生成时的参数一样,具体原图参数可以在 PNG Info 面板中查看并复制。
示例:
二、 多模型组合应用
还支持多个模型的组合使用,从而对图像进行多条件控制。 的多模型控制可以在设置面板中的 模块中开启:
1. 人物和背景分别控制
方法:设置 2 个 ,第一个 通过 控制人物姿态,第二个 通过 Seg 或 Depth 控制背景构成。调整 权重,如 权重高于 Depth 权重,以确保人物姿态被正确识别数据结构课程设计案例教程,再通过提示词和风格模型进行内容和风格控制。
应用模型:、Seg(自定义背景内容和结构)、Depth。
示例:
2. 三维重建
方法:通过 Depth 深度检测和 法线贴图模型,识别三维目标。再配合提示词和风格模型,重新构建出三维物体和场景。
应用模型:Depth、。
示例:
3. 更精准的图片风格化
方法:在 图生图中,通过叠加 和 Depth 模型,可以更加精准的提取图像结构,最大程度保留原图细节,再配合提示词和风格模型重新生成图像。
应用模型:、Depth。
示例:
4. 更精准的图片局部重绘
方法:在 图生图的局部重绘中,通过叠加 Canny 和 模型,可以更加精准的对图像进行局部重绘。
应用模型:Canny、。
示例:
万字长文!带你从零开始入门AI绘画神器
一、本地部署 . 前言目前市面上比较权威,并能用于工作中的 AI 绘画软件其实就两款。
阅读文章 >