一、讨论题1.O( n 2 n^2 n 2 )2.O( n n n )3.O( log ( n ) log (n)lo g (n ) )4.O( n 3 n^3 n 3 )2.O( n n n )二、编程练习1.设计一个实验,证明列表的索引操作为常数阶。
import timeit
import random
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
lenx = []
listy = []
color = ['c', 'b', 'g', 'r', 'm', 'y', 'k', 'w']
for i in range(10000, 1000001, 20000):
t = timeit.Timer("x[random.randrange(%d)]" % i,"from __main__ import random, x")
x = list(range(i))
list_time = t.timeit(number=1000)
print("%d, .3f" % (i, list_time))
lenx.append(i)
listy.append(list_time)
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))
listdot = plt.scatter(lenx, listy, c=color[3], edgecolors='r', label='list')
plt.xlabel('lenth(list)')
plt.ylabel('time(/s)')
plt.title('List_index')
plt.legend()
plt.show()
2.设计一个实验,证明字典的取值操作和赋值操作为常数阶。字典取值操作: dict.get(key)
import timeit
import random
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
lenx = []
dicty = []
color = ['c', 'b', 'g', 'r', 'm', 'y', 'k', 'w']
for i in range(10000, 1000001, 20000):
t = timeit.Timer("x.get(random.randrange(%d))" % i, "from __main__ import random, x")
x = {j: None for j in range(i)}
dict_time = t.timeit(number=1000)
print("%d, .3f" % (i, dict_time))
lenx.append(i)
dicty.append(dict_time)
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))
dictdot = plt.scatter(lenx, dicty, c=color[3], edgecolors='r', label='dict')
plt.xlabel('lenth(dict)')
plt.ylabel('time(/s)')
plt.title('dict_assign()')
plt.legend()
plt.show()
2. 字典赋值操作: dict[key] = value
t = timeit.Timer("x[random.randrange(%d)] = random.randrange(%d)" % (i,i), "from __main__ import random, x")
3.列表和字典比较del 操作的性能
import timeit
import random
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
lenx = []
listy = []
dicty = []
color = ['c', 'b', 'g', 'r', 'm', 'y', 'k', 'w']
for i in range(1000000, 100000001, 1000000):
t = timeit.Timer("del x[random.randrange(%d)]" % i, "from __main__ import random, x")
x = list(range(i))
list_time = t.timeit(number=1)
x = {j:None for j in range(i)}
dict_time = t.timeit(number=1)
print("%d, .5f, .5f" % (i, list_time, dict_time))
lenx.append(i)
listy.append(list_time)
dicty.append(dict_time)
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))
listdot = plt.scatter(lenx, listy, c=color[3], edgecolors='r', label='list')
dictdot = plt.scatter(lenx, dicty, c=color[1], edgecolors='b', marker='^', label='dict')
plt.xlabel('lenth(list&dict)')
plt.ylabel('time(/s)')
plt.title('List&Dict_del_analysis')
plt.legend()
plt.show()
4.给定一个数字列表,其中的数字随机排列,编写一个线性阶算法,找出第k 小的元素,并解释为何该算法的阶是线性的。5.针对前一个练习,能将算法的时间复杂度优化到O( n l o g n n log n n l o g n )吗?
import timeit
import random
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
def findkMin(x, k):
if k == 0:
return -1
k -= 1
while k:
temp = x[0]
j = 0
for i in range(len(x)):
if temp > x[i]:
temp = x[i]
j = i
del x[j]
k -= 1
temp = x[0]
for i in range(len(x)):
if temp > x[i]:
temp = x[i]
return temp
def findkMin1(x, k):
x.sort()
return x[k-1]
lenx = []
find1y = []
find2y = []
color = ['c', 'b', 'g', 'r', 'm', 'y', 'k', 'w']
if __name__ == '__main__':
x1 = [1,3,2,4]
x = list(range(100))
np.random.shuffle(x)
print(x)
print(findkMin1(x,0))
for i in range(100, 200000, 1000):
t1 = timeit.Timer("findkMin(x,random.randrange(%d))" % i, "from __main__ import random, x,findkMin")
t2 = timeit.Timer("findkMin1(x,random.randrange(%d))" % i, "from __main__ import random, x,findkMin1")
x = list(range(i))
np.random.shuffle(x)
findtime1 = t1.timeit(number=1)
x = list(range(i))
np.random.shuffle(x)
findtime2 = t2.timeit(number=1)
print("%d, .6f,.6f" % (i, findtime1, findtime2))
lenx.append(i)
find1y.append(findtime1)
find2y.append(findtime2)
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))
plt.scatter(lenx, find1y, c=color[3], edgecolors='r', label='FindKMin1')
plt.scatter(lenx, find2y, c=color[1], edgecolors='b', marker='^', label='FindKMin2')
plt.xlabel('lenth(list)')
plt.ylabel('time(/s)')
plt.title('FindKMin_analysis')
plt.legend()
plt.show()
使用排序方法的()时间复杂度并不是常数,如下:
三、总结
主要学习了
1.大O记法数据结构和算法 2.Python数据结构与算法分析课后习题__chapter2,
2.时间复杂度数据结构和算法,
3.绘制散点图,
4.如何对简单的程序进行基准测试等。
:
: 纳梨
Title: 2.数据结构与算法分析课后习题
相关阅读Title: 网页开发实现本地上传 实现图片上传接口开发 并生成可以访问的图片url…
版本:.7
功能,开发用户访问页面,支持图片上传,并保存在服务器上。
[En]
, a user to visit the page, , and save it on the .
项目结构:
app.py文件内容如下:
from flask Flask, , ,
from .utils
os
app = Flask(name)
设置图片保存文件夹
= ‘photo’
app.[‘’] =
设置允许上传的文件格式
= ‘png’, ‘[jpg’, ‘jpeg’]
判断文件后缀是否在列表中
def ():
‘.’ in and .(‘.’, 1)[-1] in
上传图片
@app.route(“/photo/”, =[‘POST’, “GET”])
def ():
if . == ‘POST’:
获取post过来的文件名称,从name=file参数中获取
file = .files[‘file’]
if file and (file.):
print(file.)
方法会去掉文件名中的中文
= (file.)
保存图片
file.save(os.path.join(app.[‘’], ))
“”
else:
“格式错误,请上传jpg格式文件”
(‘index.html’)
查看图片
@app.route(“/photo/.jpg”)
def ():
图片上传保存的路径
with open(r’C:/Users////photo/{}.jpg’.(), ‘rb’) as f:
image = f.read()
resp = (image, =”image/jpg”)
resp
if name == “main“:
app.run(host=’0.0.0.0′, port=5000, debug=True)
index.html内容如下:
请上传图片文件
启动app.py文件后数据结构和算法,我们先访问 :8002/photo/
1、页面如下:
2、我们先上传一张 1001.jpg,提交后界面如下:
3、然后我们尝试通过图片url来访问这张图片:
搞定收工!
以上这篇 实现图片上传接口开发 并生成可以访问的图片url就是小编分享给大家的全部内容了,希望能给大家一个参考